Skip to main content\(\newcommand{\powerset}[1]{\mathcal{P}(#1)}
\def\domain{\operatorname{dom}}
\def\codomain{\operatorname{cod}}
\def\funimage{\operatorname{img}}
\def\defeq{\coloneqq}
\def\eqdef{\eqqcolon}
\def\syndef{\Coloneqq}
\def\simp{\Rightarrow}
\newcommand{\edist}{\mathit{edist}}
\newcommand{\rd}{\$d}
\newcommand{\rs}{\$s}
\newcommand{\rt}{\$t}
\newcommand{\lo}{\mathit{lo}}
\newcommand{\hi}{\mathit{hi}}
\newcommand{\pc}{\mathit{pc}}
\newcommand{\shamt}{\mathit{n}}
\newcommand{\offset}{i}
\newcommand{\marke}{\mathit{label}}
\newcommand{\addr}{\mathit{addr}}
\newcommand{\imm}{\mathit{imm}}
\newcommand{\sext}{\mathrm{se}}
\newcommand{\zext}{\mathrm{ze}}
\newcommand{\sei}{\sext(i)}
\newcommand{\zei}{\zext(i)}
\newcommand{\bft}[2]{[#1:#2]}
\newcommand{\ite}[3]{\mathop{\mathit{if}}\,{#1}\mathrel{\mathit{then}}{#2}\mathrel{\mathit{ else }}{#3}}
\newcommand{\cbranch}{\mathit{cbr}}
\newcommand{\Nat} {\mathbb{N}}
\newcommand{\Int} {\mathbb{Z}}
\newcommand{\Bit} {\mathbb{B}}
\newcommand{\bbase} {B}
\newcommand{\bnine} {A}
\newcommand{\bneg} [1] {\overline{#1}}
\newcommand{\band} {\mathrel{\&}}
\newcommand{\bor} {\mathrel{|}}
\newcommand{\bxor} {\mathrel{\hat{\phantom{+}}}}
\newcommand{\badd} {\mathrel{+}}
\newcommand{\blts} {\mathrel{\lt_s}}
\newcommand{\bltu} {\mathrel{\lt_u}}
\newcommand{\baddn} {\mathrel{+_n}}
\newcommand{\bsubn} {\mathrel{-_n}}
\newcommand{\bsll} {\mathrel{\ll}}
\newcommand{\bsrl} {\mathrel{\gg}}
\newcommand{\bsra} {\mathrel{\overset s\gg}}
\newcommand{\bconcat} {\,}
\newcommand{\bseqq} [2] {{#1}_{#2}\dots {#1}_0}
\newcommand{\bseq} [2] {{#1}_{#2-1}\dots {#1}_0}
\newcommand{\bsintp} [1] {[#1]}
\newcommand{\buintp} [1] {\langle #1\rangle}
\newcommand{\buintpb}[2] {\buintp{#1}_{#2}}
\def\Var{\mathit{Var}}
\def\Val{\mathit{Val}}
\def\Addr{\mathit{Addr}}
\def\Expr{\mathit{Expr}}
\def\LExpr{\mathit{LExpr}}
\def\ExprS{\mathit{ExprS}}
\def\Stmt{\mathit{Stmt}}
\def\Prg{\mathit{Prg}}
\def\Conf{\mathit{Conf}}
\def\Ty{\mathit{Ty}}
\def\Assert{\mathit{Assert}}
\newcommand{\TWhile}{\mathtt{While}}
\newcommand{\TIf}{\mathtt{If}}
\newcommand{\TBlock}{\mathtt{Block}}
\newcommand{\TAssign}{\mathtt{Assign}}
\newcommand{\TAbort}{\mathtt{Abort}}
\newcommand{\TVar}{\mathtt{Var}}
\newcommand{\TConst}{\mathtt{Const}}
\newcommand{\TBinary}{\mathtt{Binary}}
\newcommand{\TAddrOf}{\mathtt{Addr}}
\newcommand{\TIndir}{\mathtt{Indir}}
\newcommand{\TSeq}{\mathtt{Seq}}
\newcommand{\TTerm}{\mathtt{Term}}
\newcommand{\TCrash}{\mathtt{Crash}}
\newcommand{\AIf}[3]{\TIf\left[#1,#2,#3\right]}
\newcommand{\AWhile}[2]{\TWhile\left[#1,#2\right]}
\newcommand{\ABlock}[2]{\TBlock_{#1}\left[#2\right]}
\newcommand{\AAssign}[2]{\TAssign\left[#1,#2\right]}
\newcommand{\AAbort}{\TAbort}
\newcommand{\ASeq}[2]{\TSeq\left[#1,#2\right]}
\newcommand{\ATerm}{\TTerm}
\newcommand{\ACrash}{\TCrash}
\newcommand{\AVar}[1]{\mathtt{Var}_{#1}}
\newcommand{\ALVal}[1]{\mathtt{LVal}\left[#1\right]}
\newcommand{\AConst}[1]{\TConst_{#1}}
\newcommand{\ABinary}[3]{\TBinary_{#1}\left[#2,#3\right]}
\newcommand{\AAddrOf}[1]{\TAddrOf\left[#1\right]}
\newcommand{\AIndir}[1]{\TIndir\left[#1\right]}
\newcommand{\CIf}[3]{\mathtt{if}\,(#1)\,#2\,\mathtt{else}\,#3}
\newcommand{\CWhile}[2]{\mathtt{while}\,(#1)\,#2}
\newcommand{\CWhileInv}[3]{\mathtt{while}\,(#1)\,\mathtt{\_Inv}(#3)\,#2}
\newcommand{\CBlock}[1]{\{#1\}}
\newcommand{\CAssign}[2]{#1=#2;}
\newcommand{\CAbort}{\mathtt{abort();}}
\newcommand{\CBinary}[3]{#2\mathop{#1}#3}
\newcommand{\CAddrOf}[1]{\}
\newcommand{\CIndir}[1]{*#1}
\newcommand{\CSeq}[2]{{#1}\ {#2}}
\newcommand{\CTerm}{\varepsilon}
\newcommand{\CCrash}{\Lightning}
\newcommand{\CConcat}[2]{#1\mathop{+\!+}#2}
\newcommand{\CAssert}[1]{\mathtt{assert}(#1)}
\newcommand{\CAssume}[1]{\mathtt{assume}(#1)}
\newcommand{\CPtr}[1]{#1*}
\newcommand{\CAssnVV}[2]{\CAssign{\CVar #1}{\CVar #2}}
\newcommand{\CAssnVC}[2]{\CAssign{\CVar #1}{\CConst #2}}
\newcommand{\CSeqThree}[3]{\CSeq{#1}{\CSeq{#2}{#3}}}
\newcommand{\CSeqFour}[4]{\CSeq{#1}{\CSeqThree{#2}{#3}{#4}}}
\newcommand{\COp}[1]{\mathbin{\mathtt{#1}}}
\newcommand{\CVar}[1]{\mathtt{#1}}
\newcommand{\CConst}[1]{\mathtt{#1}}
\newcommand{\CPrg}[1]{\texttt{#1}}
\newcommand{\CInt}{\mathtt{int}}
\newcommand{\CChar}{\mathtt{char}}
\newcommand{\CVoid}{\mathtt{void}}
\newcommand{\tptr}[1]{#1\texttt{*}}
\def\pto{\rightharpoonup}
\def\steprel{\rightarrow}
\def\terminates{\mathrel{\downarrow}}
\newcommand\config[2]{\langle#1\mid #2\rangle}
\newcommand\configt[1]{\config{\CTerm}{#1}}
\def\castrel{\leftrightarrow}
\newcommand{\stmtjudge}[2]{{#1}\mathrel{\vdash}{#2}}
\newcommand{\stmtGamma}[1]{\stmtjudge{\Gamma}{#1}}
\newcommand{\typejudge}[3]{{#1}\mathrel{\vdash}{#2}\mathrel{:}{#3}}
\newcommand{\typeGamma}[2]{\typejudge{\Gamma}{#1}{#2}}
\newcommand{\codeE}[5]{\mathit{#1}\enspace #2\enspace #3\enspace #4 = #5}
\newcommand{\codeR}[3]{\codeE{codeR}{\mathit{offs}}{#1}{#2}{#3}}
\newcommand{\codeL}[3]{\codeE{codeL}{\mathit{offs}}{#1}{#2}{#3}}
\newcommand{\codeSO}[3]{\mathit{codeS}\enspace #1\enspace #2 = #3}
\newcommand{\codeS}[2]{\mathit{codeS}\enspace \mathit{offs}\enspace #1 = #2}
\newcommand{\codePO}[3]{\mathit{codeP}\enspace #1\enspace #2 = #3}
\newcommand{\codeP}[2]{\mathit{codeP}\enspace \mathit{offs}\enspace #1 = #2}
\newcommand{\mreg}[1]{\mathtt{\$#1}}
\newcommand{\lcc}{\mathbin{::}}
\def\rsl{r_1\lcc rs}
\def\rsls{r_1\lcc r_2\lcc rs}
\def\rlist{r\lcc{rs}}
\ifdefined\isLatex
\def\adra{\bigtriangleup}
\def\adrb{\pentagon}
\def\adrc{\diamond}
\def\adrd{\bigtriangledown}
\def\adre{\bigstar}
\def\adrf{\male}
\def\adrg{\female}
\let\oldLightning\Lightning
\renewcommand{\Lightning}{\text{\oldLightning}}
\newcommand{\denot}[1]{\llbracket {#1} \rrbracket}
\else
\def\adra{\unicode{x25b3}}
\def\adrb{\unicode{x2b20}}
\def\adrc{\unicode{x25c7}}
\def\adrd{\unicode{x25bd}}
\def\adre{\unicode{x2605}}
\def\adrf{\unicode{x2642}}
\def\adrg{\unicode{x2640}}
\def\Lightning{\unicode{x21af}}
\newcommand{\denot}[1]{[\![{#1}]\!]}
\fi
\newcommand{\denotL}[1]{L\denot{#1}}
\newcommand{\denotR}[1]{R\denot{#1}}
\newcommand{\indetval}{\mathord{?}}
\def\adra{\bigtriangleup}
\def\adrb{\bigcirc}
\def\adrc{\lozenge}
\def\adrd{\bigtriangledown}
\def\adre{\bigstar}
\def\adrf{\dagger}
\def\adrg{\ddagger}
\newcommand{\cleave}{\mathbin{\blacksquare}}
\def\models{\vDash}
\def\limp{\Rightarrow}
\def\liff{\Leftrightarrow}
\def\lneg{\neg}
\def\bigstep{\mathrel{\Downarrow}}
\def\ltrue{\mathit{true}}
\def\lfalse{\mathit{false}}
\def\exprdef{\operatorname{def}}
\newcommand{\hpc}{\operatorname{pc}}
\newcommand{\hvc}{\operatorname{vc}}
\newcommand{\amodels}[1]{M\denot{#1}}
\newcommand{\hoare}[3]{\{#1\}\mathrel{#2}\{#3\}}
\newcommand{\hoaret}[3]{[#1]\mathrel{#2}[#3]}
\newcommand{\passingt}[1]{{#1}_\checkmark}
\newcommand{\failingt}[1]{{#1}_\times}
\newcommand{\passing}{\passingt\sigma}
\newcommand{\failing}{\failingt\sigma}
\newcommand{\slabel}[1]{\mathit{lab}}
\newcommand{\subtyperel} {\mathrel{\le}}
\newcommand{\prgltr}{s}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section C.22 O1: Compiler Introduction (Syntax Analysis, Static Semantics)
Synopsis.
Program is just a stream of characters
Lexer forms “words” (called tokens) from characters and can already detect lexical errors.
Parser checks if token stream adheres to concrete syntax. If yes, it builds the AST, if not, it reports errors.
However, not all syntactically correct programs are valid C programs.
They can violate static semantics: types don't match.
Analyzing static semantics (“semantic analysis”) can detect such errors and discard erroneous programs.
As a side effect, it elaborates types which we need later on for code generation.
Language is statically type-safe if well-typed programs don't get stuck.
Discuss examples of C programs that are well-typed but get stuck and discuss how Java solves these problems.
Introduce type system for C0 (
Section 6.6): relation of a type environment, an expression, and its type.
Define typing rules inductively over the syntax.